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1.0 Overview  

This final report summarizes two different efforts to model the real-world vehicle activity and 

tailpipe emissions data collected by the UVM Transportation Air Quality Laboratory for two model 

year 2010 Toyota Camry vehicles during on-road driving in Chittenden County, Vermont.  The 

report includes two manuscripts that were presented at the annual Transportation Research Board 

meetings in Washington, DC in January 2013 and January 2014. 

 

More information on the dataset used in these analyses can be found in the UVM Transportation 

Research Center report TRC #14-007 which describes the Total On-Board Tailpipe Emissions 

Measurement System (TOTEMS) sampling plan and instrumentation in detail. 
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2.1 Abstract 
 

In June 2012, the Environmental Protection Agency (EPA) released the “Operating Mode 

Distribution Generator” (OMDG) a tool for developing an operating mode distribution as an input 

to the Motor Vehicle Emissions Simulator model (MOVES). The tool converts basic information 

about traffic operations – idle time, grade, and average speed – into an operating mode distribution. 

This tool is designed to make project-level analyses for CO and PM hot-spots easier to conduct 

with basic traffic activity data. 

 

This paper compares the operating mode distributions obtained from this tool with those measured 

on a vehicle instrumented with the Total On-Board Tailpipe Emissions Measurement System 

(TOTEMS). TOTEMS generates a wealth of data, including a vehicle’s speed, idle time, and link 

grade – all of the inputs necessary to run the OMDG. The comparison is made for 4 signalized 

intersections on an urban arterial in Burlington, Vermont.  

 

This analysis shows that the OMDG, when compared to 31 test runs of an instrumented vehicle, 

was more accurate under circumstances of no to low grade and higher congestion (higher stop 

time). Estimation inaccuracies are most critical for specific operating modes -- for CO under high 

VSP conditions; for PM10 under braking conditions (i.e. VSP <0).  

 

This investigation has developed a method for quantitatively evaluating tools designed to simplify 

a mobile emissions analysis. Future work will include the development of models for estimating 

operating modes of a traffic stream using traffic microsimulation and highlighting those parameters 

that are most critical to calibrate for obtaining an accurate operating mode distribution estimate. 
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2.2 Introduction 
The U.S. Environmental Protection Agency (EPA) has published guidance for performing “project-

level” transportation conformity analysis of PM10, PM2.5, and CO “hot-spots” – sub-regional areas 

where local pollution concentrations might exceed National Ambient Air Quality Standards [1]. To 

quantify emissions impacts from hot-spots EPA requires use of the Motor Vehicle Emission 

Simulator (MOVES).Current regulations will require that MOVES be applied for “hotspot” 

analysis beginning in December 2012.  

 The development of MOVES creates a new era in mobile source modeling that brings with 

it some significant modeling challenges, particularly in developing accurate inputs. Key among the 

inputs for a project level analysis is the traffic activity data. MOVES provides three methods for 

supplying traffic activity data – average speeds, time-speed trajectories (link drive schedules), and 

operating mode distributions. However, prior research has concluded that, of these three methods, 

providing an operating mode distribution of the traffic stream results is the most direct method for 

taking advantage of the drive schedule data programmed into MOVES [2, 3, 4]. When using the 

other two approaches -- average speed or the link drive schedule -- MOVES translates the input 

data into an operating mode distribution resulting in some loss of accuracy. 

 There are many methods for estimating an operating mode distribution, including traffic 

microsimulation modeling. However, some of these methods can be quite sophisticated and, hence, 

costly. Further, as described below, there are questions raised in prior research regarding the 

suitability of traffic microsimulation for accurately replicating the operating modes of a traffic 

stream. For these reasons there is interest in developing simpler analytical methods for developing 

traffic activity data inputs to MOVES. Simpler analytical methods would be more affordable and 

easier to execute by agency staff tasked with performing or peer-reviewing a project-level analysis.  

 To advance the objective of having an analytically accessible traffic activity model, the 

EPA has developed the MOVES Operating Mode Distribution Generator (OMDG). The OMDG 

enables the analyst to input basic data on traffic operations – average speed of the vehicle stream, 

time spent idling (as a fraction of the total travel time), and average grade of the roadway – and 

obtain a corresponding operating mode distribution. Using the OMDG can greatly simplify the 

preparation of traffic activity data for input into MOVES. As the OMDG is a modeling tool that 

simplifies the approach, a key question relates to the accuracy of the OMDG’s output. How much, 

if any, accuracy is sacrificed through the process of simplifying the traffic activity modeling?  

 This paper examines this question by comparing the operating mode distribution from a 

real-world instrumented vehicle with that obtained using the OMDG. We seek to understand how 

much CO and PM10 emissions accuracy is sacrificed through simplifying the traffic activity input 

data with the OMDG. 

 

2.3 Background 
A number of studies have researched the preparation of traffic activity data as inputs to mobile 

source air quality models. Several of these have evaluated the use of microsimulation modeling 

for this purpose. 

 Chamberlin et al. [5,6] showed that microsimulation models could be used to develop 

traffic activity inputs to MOVES for analyzing the emissions impacts of traffic operational 

changes such as signal optimization or changes to an intersection control. The authors showed 

how microsimulation modeling could be used to prepare traffic activity data for each of the three 

input methods MOVES supports: average speed, link drive schedule, and operating mode 

distribution. The research concluded that operating mode distributions provide the most direct 

method of utilizing MOVES modal approach to emissions generation. 

 Other research has raised questions regarding the suitability of traffic microsimulation 

modeling for producing accurate traffic modal information. Hallmark and Guensler [7] compared 
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the speed-acceleration distributions obtained from traffic activity data developed using the 

NETSIM miscrosimulation model with field data obtained with a laser range finder (LRF). The 

LRF data enabled the calculation of speed and acceleration for a sample of vehicles observed 

traversing a signalized intersection. The speed-acceleration distributions of sampled vehicles 

were calculated and compared against the distributions of similar vehicles modeled in the 

microsimulation. The analysis concluded that NETSIM, at default driver parameter inputs, does 

not adequately simulate instantaneous modal vehicle activity at intersection approaches. For mid-

block operations, field data exhibited greater speed/acceleration variability than generated by 

NETSIM. 

 Viti et al. [8] estimated traffic stream operating modes at a signalized intersection using 

image processing. Their work compared the results of two microsimulation software packages 

and confirmed that the default driver acceleration parameters are not accurate representations of 

real-world operational activity data. Specifically, default microsimulation driver behavior 

parameters assume higher acceleration rates of unconstrained (non-following) vehicles, leading to 

an overestimation of emissions impacts. 

 Song et al. [9] reinforced this finding further when they evaluated the use of VISSIM to 

adequately replicate the operating modes of a real-world traffic stream obtained from an 

instrumented vehicle. They focused on vehicle specific power (VSP) as the most critical 

explanatory variable. The research team evaluated over 8,800 speed segments (>500,000 seconds 

of real-world speed data) to develop normal distributions of VSP by 2 mph speed bins. A 

simulation test bed was constructed in VISSIM and calibrated to average speed and flow. The 

simulation test bed indicated that microsimulation overestimated the fraction of vehicle flow in 

lower and higher VSP bins, resulting in significant errors in emissions estimates when compared 

to real-world data. The analysis went further to adjust 6 driver behavior parameters to determine 

whether the statistical fit between the real world and simulated VSP data could be improved. The 

authors concluded that traditional calibration methods could not improve the accuracy of 

replicating VSP distributions of real-world data. 

 In summary, foregoing research has evaluated the suitability of microsimulation 

modeling for generating traffic activity data inputs for MOVES. There is general concern that 

these methods may be beyond the capabilities of many agencies tasked with either conducting or 

peer reviewing a project-level analysis using MOVES. Furthermore,, much of the previous 

research questions the ability to calibrate microsimulation models to the operating modes of the 

real-world traffic stream.  

 To address these concerns, Papson et al. [10] developed a streamlined methodology 

which associates traffic activity with time spent in one of four “modes” – cruise, deceleration, 

acceleration, idle – using Webster’s equations for time-distance relationships at intersections. The 

authors developed quantitative relationships to translate “time in mode” into emissions outputs 

for signalized intersections. This work represents one method for simplifying the traffic activity 

inputs to MOVES, basing an input operating mode distribution on a standard traffic engineeing 

analysis (level of service).  

 In one of the early research studies for establishing the process of conducting a project-

level analysis using MOVES Pechan et al. [11] developed activity profiles for a number of 

facilities where a project-level emissions analysis may be required. These included freeway on-

ramps, freeway-to-freeway interchanges, and signalized arterials. The authors developed default 

VSP profiles for these situations from which operating mode distributions could be estimated for 

input into MOVES. 

 EPA’s newly released methodology – the MOVES Operating Mode Distribution 

Generator – is a further attempt to simplify the process of producing traffic activity inputs for 

MOVES. The OMDG is designed to simplify the approach to estimating operating modes based 

on average intersection approach speeds. In doing so, the OMDG is designed to provide a more 
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accurate estimate of a traffic stream’s operating mode distribution than would be the case 

assuming a simple average speed for all approach traffic.  

 Acknowledging that any modeling exercise is a simplification of real world dynamics, 

the research presented in this paper seeks to identify the strengths and weaknesses of the OMDG 

tool for producing accurate traffic activity inputs to MOVES. The existence of highly detailed 

traffic activity data from an instrumented vehicle enables an analysis of the accuracy of the 

OMDG for replicating a real-world operating mode distribution given the relatively coarse traffic 

activity input data required by the OMDG. 

 

2.4 Real-world Data 
This research leverages part of a dataset developed at the University of Vermont Transportation 

Air Quality Laboratory using an on-board instrumentation package, TOTEMS, developed to 

quantify the following vehicle emissions and performance metrics at one second resolution while 

a test vehicle is driven on the real-world road network: tailpipe gas and particle pollutant 

emission rates, vehicle position, engine operating parameters, ambient environment and 

instrument conditions. All devices are powered by an on-board battery system to prevent 

additional loads on the vehicle engine. Details on the TOTEMS instrumentation can be found in 

previous work [12,13,14]. In this study, only vehicle activity and road grade data were used to 

address the research questions. 

 Vehicle position was measured using two GPS receivers mounted on the roof of the test 

vehicle. A Garmin GPS16-HVS receiver was used to provide primary location data and its 

Fugawi software synchronized computer clocks. A Geostats Geologger model DL-04, Version 

2.4 served as a backup receiver. Speed and acceleration were determined based on vehicle speed 

data collected at >3 Hz by a Toyota TechStream OBD-II scantool. Scantool data were averaged to 

1 Hz resolution to match that of the GPS receivers. Data were validated using range checking for 

individual scantool parameters; ArcGIS was used to remove erroneous locations outside a 25m 

route buffer.  

 Road grade was measured using the gyroscopic system of the Vermont Agency of 

Transportation ARAN van (Automated Road Analyzer; www.fugroroadware.com) at 0.002 mile 

spatial resolution. The test vehicle was a model year 2010 Toyota Camry conventional gasoline 

sedan driven by a single driver over a 32 mile driving route through Chittenden County Vermont. 

The vehicle weight with TOTEMS instruments, battery power system, driver and passenger was 

~300 pounds over vehicle curb weight. Prior to data collection, the vehicle was driven on a 2.5-

mile warm-up route so that engine coolant temperature was equal for cold and warm test dates 

over the study period (February 2010 to September 2011). Thirty-one repeated runs of the entire 

32-mile route were used for this analysis. Temperature and relative humidity were logged with 

Onset HOBO loggers mounted both inside and outside the vehicle. 

Vehicle specific power (VSP) was calculated from the measured vehicle speed, computed 

acceleration, and road grade joined to the vehicle’s 1Hz lat/long GPS position using ESRI 

ArcMAP version 9 software.  

 

𝑉𝑆𝑃 = 𝑛−1{𝑎𝑣 + 𝑏𝑣2 + 𝑐𝑣3 + 𝑚𝑣𝑎 + 𝑔𝑚𝑣 sin[tan−1(𝑔𝐺 100⁄ )])} 

where 

 VSP = vehicle specific power 

 n = 1.4788 (fixed mass factor) 

 a = 0.156461 

 b = 0.00200193 

 c = 0.000492646 

 v = speed in meters per second 
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 a = acceleration in meters per second per second 

 m = 1.55001585 (vehicle mass in metric tons) 

 g  = 9.81 (acceleration of gravity) 

 G = grade in percent  

 

 

2.5 Description of the Urban Arterial Test Bed 
 For this study a 0.70 mile portion of the 32-mile vehicle circuit was chosen as a test bed. 

This specific portion represents a signalized urban arterial corridor with moderate to high 

congestion. Hence, significant idling time can be encountered along its length, making it a good 

candidate for evaluating the OMDG. 

 The test bed (Figure 2-1) is in Burlington, Vermont, and begins just south of North Street 

and extends southward to south of Main Street. The corridor passes through five signalized 

intersections: Sherman Street, Pearl Street, Cherry Street, College Street, and Main Street, from 

north to south. Between North Street and Sherman Street, the corridor is one-way in the south 

bound direction and has two lanes. Between Sherman Street and Main Street the corridor has two 

lanes in each direction. For the purposes of this research the corridor has been divided into 6 

segments of lengths ranging from 400 to 800 feet, five of which contain a signalized intersection 

(Table 2-1). 

 The corridor is an urban arterial with a posted speed limit of 30 mph. Development 

the corridor is relatively dense and urban in nature, except for along the west side between 

Street and College Street, where there is a park. Between North Street and Pearl Street 

1 and 2) the corridor is relatively level, but between Pearl Street and Main Street the corridor 

significant slope. On its 32-mile trial circuit, the TOTEMS vehicle progressed from north to 

from segments 1-6 sequentially.  

 

 

 

 

Table 2-2 shows the key operating characteristics of the TOTEMS vehicle over each of the 6 

Battery Street segments, providing the portion of the link travel time spent idling and the average 

vehicle speed. These two operating parameters are featured as they are inputs to the Operating 

Mode Distribution Generator. 

 Four of the six segments were selected for the comparative analysis described in this 

research. Segment 1 did not include a major intersection and thus would not include significant 

idling time, an essential input to the OMDG for this analysis. Segment 4 was also dropped from 

the analysis because its 6% grade was outside the grade thresholds supported by the OMDG [4]. 

 Segments 2, 3, 5, and 6 are considered suitable for this comparative analysis for the 

following reasons: 

 They incorporate a signalized intersection and, as a result, have a non-zero idling fraction. 

 They include grade effects within the -5 to +5% thresholds supported by the OMDG. 

 They have varying amounts of main-and side-street traffic providing variability in the 

traffic conditions encountered along each segment 
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Figure 2-1. Test Bed Urban Arterial, Battery Street in Burlington, Vermont, Showing Six 

Segments (four of which are used for the comparative analysis) 

 

 

 

 

Table 2-1. Key Characteristics of the Battery Street Segments 

 
 

 

 

Segment

Length 

(feet)

Grade 

(southbound)

Cross 

Street Control

Major Street

Daily Entering 

Vehicles

Cross Street 

Daily Entering 

Vehicles Analyzed Note

1 650 0.3 - - 4,300 - No No major intersection

2 650 0.5 Sherman St Signal 9,000 5,000 Yes

3 400 -3.3 Pearl St Signal 15,100 2,400 Yes

4 800 -6.2 Cherry St Signal 16,100 1,700 No Grade outside of range of tool

5 450 -4.6 College St Signal 13,900 2,800 Yes

6 400 -2.6 Main St Signal 10,000 6,800 Yes
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Table 2-2. TOTEMS Real-World Vehicle Operating Parameters by Street Segment 

 
 

2.6 Data Processing 
 The key question of this research is determining how well the simplifying analytics of the 

Operating Mode Distribution Generator can replicate operating modes from a real-world 

instrumented vehicle. It is assumed that some amount of data accuracy will be sacrificed for the 

greater simplicity in traffic activity inputs required by the OMDG. Thus, the key comparison is 

between the operating mode distributions produced by the OMDG with the real-world operating 

mode distribution of the TOTEMS vehicle. A second set of comparisons is made for hot-spot 

emissions – PM10 and CO. 

 The OMDG has three main inputs: average speed, percent time idling, and average grade. 

These were calculated for each of the four segments using the data from the conventional TOTEMS 

vehicle, averaging across 31 separate runs through the Battery Street test bed. The OMDG input 

values for each of four segments were used to generate the operating mode distributions for each 

of the four segments 2, 3, 5, and 6. The operating mode distributions generated by the OMDG were 

then compared to the actual operating mode distributions calculated from the 31 TOTEMS vehicle 

trials for each of the four segments.  

 For the emissions analysis, these OMDG operating mode distributions and the TOTEMS, 

real-world operating mode distributions were run in MOVES assuming two year old vehicles of 

source type 21 (passenger vehicles). The MOVES emissions estimates were for Chittenden County, 

VT, during an 8:00 am hour in July of 2012. Estimates were for the running exhaust, tire wear, and 

brake wear emission processes.  

  

2.7 Analysis of Results  
 

Operating Mode Distribution Comparison. Operating mode distributions generated by OMDG 

for the TOTEMS data were in agreement with the OpMode frequencies computed directly from 

TOTEMS raw data for some for some segments and not others (Figure 2-2). The discrepancies 

between OMDG and mean TOTEMS OpModes could often be significant and outside a 95% 

confidence interval for the mean of the real-world data.  

 Many operating modes are not particularly significant from an emissions standpoint, 

while others are very significant given the specific emission factors associated with them within 

MOVES. For example, OpModes 0 and11showed large deviations from measured values for 

Segments 2, 3, 5 and 6. OpMode 21 differences were greatest for Segment 3. These OpModes 

which show frequency differences between OMDG and TOTEMS are expected to also result in 

differences in emission rates. 

 

Segment Portion Time Idling Average Speed (mph)

1 0.000 16

2 0.400 11

3 0.100 21

4 0.025 28

5 0.055 19

6 0.320 11
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Figure 2-2. Segment 2, 3, 5, 6 Operating Mode Distributions, OMDG (triangles) vs TOTEMS 

(circles)(note: the measurement band shows a 95% confidence interval of the mean of 

the TOTEMS vehicle over 31 trial runs) 

 

Emission Rates. The end goal of a project-level analysis is to estimate emissions, so an 

appropriate way to evaluate the performance of the OMDG is to compare MOVES emissions 

estimates based on the OMDG results to estimates based on the TOTEMS real-world operating 

mode distributions.  

 Looking at the overall emissions results by arterial segment (Figure 2-3), the analysis 

shows that the OMDG over-estimates CO emissions by about 30 percent or more for segments 3, 

5, and 6, but roughly matches the TOTEMS estimates for segment 2. For PM10, the OMDG and 

TOTEMS estimates are basically the same for segments 2,3,and 6, but the OMDG under-

estimates for segment 5 by about 10%. The OMDG performs better for PM10 (under-estimating 

by 10 percent for one segment), than for CO (over-estimating by 30 percent for three segments).  

 The difference in performance could be explained by the difference in variability of 

emission rates between PM10 and CO. The raw emission rates by operating mode for PM10 vary 

from about 0.3 to 2.4 grams per vehicle-hour (Figure 2-4). For CO, the emission rates by operating 

mode vary from about 0.3 to 800 grams per vehicle hour (Figure 2-4), making it more sensitive to 

errors in the operating mode distribution estimates. PM10 emission factors by operating mode are 
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less variable and, hence, more forgiving of errors in the operating mode distribution, resulting in 

better performance.  

 Another useful comparison to make is performance by segment within one pollutant type. 

For CO, the OMDG performed well for segment 2, and not as well for segments 3, 5 and 6 

(Figure 2-3). To investigate the reasons for the difference in performance, we introduce the 

weighted emission rate, which is the product of the raw emission rate and operating mode 

distribution for a particular operating mode. The weighted emission rate indicates the amount of 

pollution in one vehicle-hour that can be attributed to a particular operating mode. The sum of all 

weighted emission rates across all operating modes is the overall emission rate for the vehicle-

hour. Errors in the weighted emission rates (arising from errors in operating mode distribution) 

contribute to the error in the overall emission rate.  

 Investigating the weighted emission rates for CO shows that much of the error associated 

with segments 3, 5 and 6 can be attributed to over-estimating the distribution for operating mode 

30 (Figure 2-5), which is the highest power-output operating mode for speeds between 25 and 50 

mph, and has the highest emission rate of any operating mode (more than 800 grams per vehicle-

hour – about three times higher than the second highest emission rate). With such a high emission 

rate, even small errors in estimating the distribution for operating mode 30 will have a large effect 

on the emissions estimates. In fact the absolute errors for operating mode 30 are small – less than 

one percent. But the magnifying effect of the large emission rate results in high emissions 

estimate errors.  

 The distribution for operating mode 30 is not as severely over-estimated for segment 2 as 

for the other segments (see Figure 2-5). One possible explanation is that the OMDG performs 

better for more moderate grades than for more severe grades. The MOVES default operating 

mode distributions (which are used by the OMDG) were developed to represent average 

conditions. As the traffic conditions being modeled depart from the average, the emissions 

estimates will become worse. Segment 2 has an average grade of 0.5 percent, but the segments 

3,5 and 6 have grades of -3.3, -4.6, and -2.6 percent. It is possible that the more severe grades 

depart too much from average conditions to allow accurate emissions estimates.  

 For PM10, the OMDG performed well for segment 2, 3, and 6 (Figure 2-3). However, 

looking at the weighted emission rates by operating mode (Figure 2-6) shows that for segments 3 

and 6, the good fit results from relatively severe errors of opposite sign canceling each other out, 

which leaves only segment 2 as a truly good fit.  

 The main sources of error for PM10 are operating modes 11 and 21, which are coasting 

modes for speed ranges 1-25 and 25-50 mph, respectively; and operating mode 0, which is 

braking. For segments 3, 5, and 6 braking is over-estimated and coasting is under-estimated 

(Figure 2-6). This may be due to the operational environment of the test bed. As the TOTEMS 

vehicle travels south along the 0.7 mile route portion, it enters and travels through a coordinated-

signalized corridor. The first coordinated signal it encounters at Sherman Street in Segment 2; 

once the vehicle leaves the intersection at Sherman Street, it is unlikely to encounter a red light at 

a downstream intersection, which would result in less braking than for average conditions. On the 

other hand, arrivals at Sherman Street in Segment 2 are not coordinated, and so are more likely to 

encounter a red light, which may result in an operating mode distribution that is closer to the 

average. 
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Figure 2-3. Segment CO and PM10 MOVES Emission Rates, OMDG (triangles) vs TOTEMS 

(circles). 

 

 

 

 

 

  
Figure 2-4. Raw CO and PM10 MOVES Emission Rates by OpMode. 
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Figure 2-5. Segment 2, 3, 5, 6 Weighted CO Emission Rates, OMDG (triangles) vs TOTEMS 

(circles) 
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Figure 2-6. Segment 2, 3, 5, 6 Weighted PM10 Emission Rates, OMDG (triangles) vs TOTEMS 

(circles) 

 

2.8 Conclusions 
 There is a desire to develop turnkey tools for developing traffic activity inputs to 

MOVES, particularly in light of current federal regulations requiring project-level hot spot 

analysis. Prior research has concluded that traffic microsimulation models are good candidates for 

developing these inputs. However, developing these models can be expensive and time 

consuming. Further, there are questions raised in the research regarding the applicability of 

default driver behavior assumptions embedded in microsimulation models, which can cause 

significant deviation of the simulated operating mode distribution from that of a real-world traffic 

stream.  

 In response, EPA has developed the Operating Mode Distribution Generator (OMDG), an 

Excel-based tool for estimating an operating mode distribution using coarser traffic activity 

inputs. 

 The research presented in this paper seeks to identify the strengths and limitations of the 

OMDG in replicating an operating mode distribution from real-world data obtained from an 
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instrumented vehicle driving along a signalized urban arterial. The research establishes the 

following: 

 

1) For many operating modes the OMDG was a good predictor when compared with those 

obtained from the instrumented vehicle for all segments;  

 

2) While no generally applicable rule can be distilled for where disagreement occurred, the 

data analysis points to specific operating modes where estimation error is more common 

and most critical in determining emissions impacts.  

 

3) Estimation error for PM10 stems from errors in operating mode distributions associated 

with braking (i.e. operating mode bin 1, 11, and 21). Due to the high PM10 emission 

factors associated with these operating mode bins, small errors in estimating this 

operating mode will result in large errors in emissions estimates. 

 

4) Estimation error for CO is associated with errors in the high acceleration operating modes 

(i.e. mode bins 29 and 30). Due to the high CO emission factors associated with these 

operating mode bins, even small errors in estimating this operating mode will result in 

large errors in emissions estimates. 

 

5) Test bed arterial segments with higher grade had poorer results in estimating operating 

modes than the one segment (Segment 2) with a relatively flat grade. 
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3.0 Calibrating a Traffic Microsimulation Model to Real-

World Operating Mode Distributions 

 

Transportation Research Board (TRB) Paper 14-0406 

Submitted by: 

 

Eric Talbot, EIT 

Resource Systems Group 

55 Railroad Row 

White River Junction, VT 05001 

802-295-4999 ph 

802-295-1006 fx 

eric.talbot@rsginc.com 

 

Robert Chamberlin, PE/PTOE (Corresponding Author) 

Resource Systems Group 

55 Railroad Row 

White River Junction, VT 05001 

802-295-4999 ph 

802-295-1006 fx 

rchamberlin@rsginc.com 

 

Britt A. Holmén, Associate Professor 

School of Engineering 

The University of Vermont 

33 Colchester Avenue, Votey 213D 

Burlington, VT 05405 

802-656-8323 

bholmen@uvm.edu 

 

and 

 

Karen Sentoff 

School of Engineering 

The University of Vermont 

33 Colchester Avenue 

Burlington, VT 05405 

802-656-8875 

ksentoff@uvm.edu 

 

Word Count: 5,420 + 2,000 (7 Figures + 1 Table) = 7,420 

Submission Date: 1 August 2013 

Resubmission Date:  

  

mailto:eric.talbot@rsginc.com
mailto:bholmen@uvm.edu
mailto:ksentoff@uvm.edu


UVM TRC Report # 14-012

  

 17 

3.1 Abstract 
 

This research seeks to understand how driver behavior parameters, as represented in one 

microsimulation package (TransModeler) can be modified to more closely match real-

world vehicle operating characteristics for the purposes of emissions estimates with 

MOVES.  

 

The calibration data for the research comes from a vehicle instrumented with the Total On-

Board Tailpipe Emissions Measurement System (TOTEMS). TOTEMS generates a wealth 

of data, including a vehicle’s second-by-second location, speed and acceleration. Data from 

41 trials of a conventional gasoline vehicle is used as the basis to compare with 

microsimulation model output for two streets in Burlington, Vermont: 1) a signalized urban 

arterial; and, 2) a stop-controlled urban collector. 

 

Adjustments to TransModeler car-following parameters could not adequately modify 

microsimulation vehicle operations to replicate the operational characteristics of the 

TOTEMS vehicles. However, adjustments to the free-flow model parameters were 

successful in more closely replicating real-world behavior. Specifically, default free-flow 

parameters governing the change in acceleration as a target link speed is approached were 

found to exaggerate driver aggressiveness.  

 

Guidelines were developed for adjusting default microsimulation free-flow model 

parameters to more accurately reflect the operating mode of a real-world vehicle using 

tailpipe CO and PM2.5 emission rates as comparison metrics. This research quantified the 

accuracy of a test bed microsimulation model when used for a mobile emissions analysis. 

For greater accuracy, analysts should be aware of the limitations of using the default free-

flow microsimulation parameter values; the dependency of tailpipe emissions on 

acceleration rates suggest a need for improved microsimulation submodels and/or changes 

in default parameterizations to more accurately reflect real-world behavior. 
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3.2 Introduction 
Transportation analysts need to provide accurate estimates of how highway improvements 

will affect emissions. The Environmental Protection Agency developed MOVES (Motor 

Vehicle Emission Simulator) to produce more accurate emissions estimates [15].  

 MOVES enables users to input vehicle activity as detailed second-by-second speed-

acceleration trajectories. These trajectories are binned within MOVES into operating 

modes which, in turn, generate detailed emissions estimates. Coupled with traffic 

microsimulation, MOVES is potentially an excellent tool for detailed estimation of 

emissions changes associated with transportation improvements. Several recent research 

efforts have successfully linked output from traffic microsimulation models to MOVES 

[16-20]. However, significant questions remain as to whether key outputs from 

microsimulation models accurately represent real-world motorist behavior. 

Microsimulation chiefly developed over the years as a tool for traffic operational 

analysis. As such, it has almost always been evaluated and calibrated against operational 

characteristics of the traffic stream, such as average speeds, throughput, queue lengths, etc. 

As long as the simulation reproduced these characteristics with sufficient realism, then the 

model was deemed to be “calibrated” [21]. 

However, MOVES depends on another characteristic of the vehicle stream that is 

usually ignored in model calibration efforts. This characteristic is the second-by-second 

speed-acceleration trajectory of each vehicle. Recent research has concluded that, while 

traffic microsimulation models can well calibrated to traffic operational characteristics, 

some model packages exaggerate driver acceleration behavior and, as a result, overestimate 

the resulting emissions. As such, the microsimulation-MOVES pairing would not be 

adequate for estimating vehicle emissions [22, 23]. 

On the other hand, if microsimulation model parameters could be adjusted to more 

accurately reflect real-world trajectories the two models combined could be a powerful tool 

for detailed analysis. 

Motivated by the potential capabilities of the combined models, this study examines 

if and how microsimulation can be used to generate inputs to a MOVES emissions analysis. 

In particular, we want to discover the answers to the following question:  

Can microsimulation models produce vehicle trajectories that appropriately reflect 

those of real-world drivers? 

To answer this question, we deployed an instrumented probe vehicle to drive a test 

route in an urban area multiple times. A microsimulation model of the test route was built 

for the traffic conditions that the probe vehicle experienced, and was used to simulate the 

probe vehicle traveling the route. We then adjusted the simulation model parameters so 

that the simulated vehicle performance characteristics would match those of the actual 

probe vehicle. In this paper we detail this calibration process and present the main findings.  

 

3.3 The MOVES Emissions Model 
MOVES is EPA’s air emissions calculator for mobile sources. MOVES supports regional 

air quality analysis, but also provides for more detailed analysis than the previous MOBILE 

family of emissions models due to an expanded set of “drive cycles”, sequential records of 

acceleration, cruise, and deceleration behaviors associated with average travel speeds on 

specific roadway types. Within MOVES, drive cycles are further characterized by their 
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distribution of “operating modes”, which represent a characteristic vehicle specific power 

(VSP) requirement associated with 3 speed ranges. In total there are 23 operating modes 

associated with emission rates for vehicles by type and age [24].  

MOVES documentation states that the model “allows users to represent intersection 

traffic activity with a higher degree of sophistication compared to previous models [25], 

accounting for “speed and temperature variations”, linked to emissions factors and 

processes obtained from extensive in-vehicle data collection. With this improved 

functionality, MOVES is potentially an excellent tool for conducting air quality 

assessments of operations-level changes such as intersection improvements. Indeed, as 

described above, EPA requires that MOVES be used to complete PM and CO hot-spot 

analysis [26]. In addition, it is expected that MOVES be used for conducting the air quality 

analysis associated with NEPA review of transportation projects. 

3.4 The TransModeler Acceleration Model  
TransModeler [12] is one of several commercial software packages that enable the 

construction of traffic microsimulation models. In TransModeler, normal vehicle 

acceleration is governed by two models: the free-flow model, and the car-following model. 

Each of these two models has a component for positive acceleration and a component for 

deceleration. Because acceleration calibration is more important for emissions estimation 

than deceleration calibration, we focus on calibrating the positive acceleration components 

of the two models (car-following and free-flow).  

Car-Following model 

For the car-following regime (defined for most vehicles as a time headway of less than 

3.17 seconds) the acceleration is given by 

�̇�𝑖,𝑗+1 = 𝐴𝑎 𝑉𝑖𝑗
𝐵𝑎

𝐷𝑖𝑗
𝛤𝑎 (𝑉𝑖−1,𝑗 − 𝑉𝑖𝑗) + 𝜀𝑖

𝐶𝐹  [ii] 

where  

 �̇�𝑖,𝑗+1 =  the acceleration for vehicle i at time j + 1; 

 𝐴𝑎, 𝐵𝑎, Γ𝑎 =  car following parameters for acceleration; 

 𝑉𝑖𝑗 =  the speed of vehicle i at time j; 

 𝐷𝑖𝑗 =  the distance between vehicle i and its leading vehicle at 

time j; 

 𝑉𝑖−1,𝑗 = the speed of vehicle i’s leading vehicle at time j; 

 𝜀𝑖
𝐶𝐹 =  car following variation parameter for vehicle i (ft/s/s). 

The parameters 𝐴𝑎 , 𝐵𝑎, Γ𝑎 are global constants for all vehicles and all links and have 

default values of 2.81, -1.67, and -0.89, respectively. These parameters can be adjusted by 

the user. 

The parameter 𝜀𝑖
𝐶𝐹 is constant for one vehicle but can vary across vehicles. As 

vehicles enter the network they are assigned a value for this parameter randomly from a 

discrete distribution. The default values are 0, -0.1, and 0.1 with probabilities of 30%, 50%, 

and 20%, respectively.  
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Free-flow model 

For the free-flow regime, the acceleration for vehicle i at time j is given by Equation i: 

�̇�𝑖𝑗 = 𝛼𝑖
𝑎 + 𝛽𝑖

𝑎 [𝑇𝑎(𝑤𝑖 𝑝𝑖⁄ , 𝑣𝑖𝑗) −
𝑔𝐺𝑖𝑗

100
] + 𝜀𝑖

𝐹𝐹 [i] 

where  

 �̇�𝑖𝑗 =  the acceleration of vehicle  i at time j  (ft/s/s); 

 𝛼𝑖
𝑎 =  additive acceleration parameter for vehicle i (ft/s/s); 

 𝛽𝑖
𝑎 =  multiplicative acceleration parameter for vehicle i 

(unitless); 

  𝑇𝑎(𝑤𝑖 𝑝𝑖⁄ , 𝑣𝑖𝑗) =  global look-up table and interpolation function for 

acceleration for vehicle of weight wi,(lbs), power pi 

(horsepower), and speed vij(mph) at time j;  

 𝑔 =  global constant representing the effect of grade on 

acceleration (ft/s/s); 

 𝐺𝑖𝑗 =  roadway grade for vehicle i at time j (%); and 

 𝜀𝑖
𝐹𝐹 =  free-flow variation parameter for vehicle i (ft/s/s). 

The free-flow model parameters 𝛼𝑖
𝑎 ,𝛽𝑖

𝑎, 𝜀𝑖
𝐹𝐹 , 𝑤𝑖  ,𝑝𝑖  are all constant for one 

vehicle, but can vary from vehicle to vehicle. As vehicles enter the simulation they are 

randomly assigned values for these parameters using three user-defined discrete probability 

distributions. Two of the distributions give joint probabilities for pairs of parameters: 

𝛼𝑖
𝑎 and𝛽𝑖

𝑎; and 𝑤𝑖  and 𝑝𝑖 .  The third distribution gives probabilities for a single 

parameter: 𝜀𝑖
𝐹𝐹 . Table  gives the default probabilities for 𝛼𝑖

𝑎 and𝛽𝑖
𝑎 and 𝜀𝑖

𝐹𝐹. The 

probability distribution for 𝑤𝑖  and 𝑝𝑖  is not presented here because it is almost always 

modified by the user to be different than the default. The lookup table for 𝑇𝑎  is given in 

Error! Reference source not found.Table 3-1. The function returns an acceleration value 

in feet per second per second (fpsps) using bilinear interpolation based on 𝑣𝑖𝑗  , and𝑤𝑖 /𝑝𝑖. 

The global constant 𝑔   is used to model the effect of grade on acceleration. This value 

should always be positive so that uphill grades predict lower magnitude positive 

accelerations than do downhill grades. This parameter is related to the acceleration of 

gravity, but it is not meant to model the effect of gravity. Rather, it is a parameter for a 

behavior model, not for a physical model. The default value is 30.5 (feet per second per 

second).  

The free-flow model incorporates an acceleration model that is applied when the 

current speed is near the target roadway speed in order to avoid overshooting the target 

speed (email communication with Caliper, 2012). This model has an important impact on 

vehicle operating performance because it forces a rapid reduction in acceleration as the 

target speed is achieved. 

 

 
Table 3-1. Default Probability Distributions for Free-Flow Model Acceleration Parameters, 

and Default Lookup Table for Free-Flow Model Parameter 𝑻𝒂 
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𝒘𝒊 𝒑𝒊⁄  

𝒗𝒊𝒋 

<10 10-20 20-30 30-40 40-50 >50 

25 9.2 9.2 7.9 7.2 6.2 5.6 

30 7.9 7.9 6.6 5.9 5.2 4.6 

35 6.9 6.9 5.6 4.9 4.3 3.9 

100 3 3 2 1.6 1 0.7 

201 1.6 1.6 1.3 0.7 0.7 0.3 

299 1.3 1.3 1 0.7 0.3 0.3 

399 1.3 1.3 1 0.3 0.3 0.3 
 

 

3.5 Calibration Method 

Probe Vehicle Data 

This research leverages a dataset developed at the University of Vermont Transportation 

Air Quality Laboratory using an on-board instrumentation package, TOTEMS, developed 

to quantify the following vehicle emissions and performance metrics at one second 

resolution: tailpipe gas and particle pollutant emission rates, vehicle position, engine 

operating parameters, and ambient environment. All devices are powered by an on-board 

battery system to prevent additional loads on the vehicle engine. Details on the TOTEMS 

instrumentation can be found in previous work [28-30]. In this study, only vehicle activity 

and road grade data were used to address the research question. 

Vehicle position was measured using two GPS receivers mounted on the roof of 

the test vehicle. A Garmin GPS16-HVS receiver was used to provide location data. Speed 

and acceleration were determined based on vehicle speed data collected at >3 Hz by a 

Toyota TechStream OBD-II scantool. Scantool data were averaged to 1 Hz resolution to 

match that of the GPS receivers. Data were validated using range checking for individual 

scantool parameters; ArcGIS was used to remove erroneous locations outside a 25m route 

buffer.  

Road grade was measured using the gyroscopic system of the Vermont Agency of 

Transportation ARAN van (Automated Road Analyzer; www.fugroroadware.com) at 

0.002 mile spatial resolution.  

The test vehicle was a model year 2010 Toyota Camry conventional gasoline sedan 

driven by a single driver over a 32 mile driving route through Chittenden County Vermont. 

The total vehicle weight with TOTEMS instruments, driver and passenger was ~300 

pounds over vehicle curb weight. Thirty-one repeated runs of a sort portion (Figure ) of a 

32-mile route were used for this analysis (February 2010 to September 2011).  

Vehicle specific power (VSP) was calculated from the measured vehicle speed, 

computed acceleration, and road grade joined to the vehicle’s GPS position using ESRI 

ArcMAP version 9 software.  

Probability Probability

0.20 0.0 1.2 0.30 0.0

0.60 0.0 1.0 0.50 -0.1

0.20 0.0 0.8 0.20 0.1
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𝑉𝑆𝑃 = 𝑛−1{𝑎𝑣 + 𝑏𝑣2 + 𝑐𝑣3 + 𝑚𝑣𝑎 + 𝑔𝑚𝑣 sin[tan−1(𝑔𝐺 100⁄ )])}  [iii] 

where 

 VSP = vehicle specific power (kW/metric ton) 

 n = 1.4788 (fixed mass factor) 

 a= 0.156461 

 b = 0.00200193 

 c = 0.000492646 

 v = speed in meters per second 

 a = acceleration in meters per second per second 

 m = 1.55001585 (vehicle mass in metric tons) 

 g  = 9.81 (acceleration of gravity) 

 G = road grade in percent  

 

 
Figure 3-1. The probe vehicle test route in Burlington VT. Road segments are identified by 

number and color indicates segments used for calibration [orange] or validation [grey]. 

The test bed is a short urban segment of a larger 31-mile route. 

 

Traffic Microsimulation 

We built a microsimulation model of the test route using the TransModeler software 

package (version 3.0) to represent the traffic conditions encountered by the probe vehicle. 

The simulation was constructed to represent midday weekday conditions (and probe data 

from this time period only was used). To model the probe vehicle we added a special class 

of vehicles to the simulation. This class was defined to have weight and horsepower 

identical to the probe vehicle. Over the course of a 1 hour simulation, 20 simulated probe 

vehicles traversed the test route, departing every 3 minutes.  
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Calibration Metric, Search Method, and Validation Method 

Model calibration was performed using a random sample of the 15 test route segments. 

Four segments were randomly selected from the signalized portion of the route (segments 

1 – 8), and four additional segments were randomly selected from the non-signalized 

portion (segments 9 – 15), for a total of 8 model calibration segments. The calibration 

segments are 1, 2, 5, 7, 9, 11, 12 and 13. The remaining 7 segments are reserved to validate 

the model once calibration was completed. 

To calibrate the model parameters, we used a global search approach. For each 

parameter of interest, we ran the simulation several times. For each simulation, the 

parameter value was chosen randomly from a pre-defined range around the default 

parameter value. For each simulation, the vehicle trajectories were saved along with the 

associated parameter values. 

After all simulations were complete, the simulation results were grouped into bins 

defined by intervals of the value of the parameter of interest. For each bin, the MOVES 

operating mode distribution was calculated for the simulated probe vehicle for each test 

route segment. The operating mode distributions were used to calculate the emission rates 

(grams per vehicle-hour) for each segment and bin using MOVES.  

Operating mode distributions were also calculated for each segment using the real-

world TOTEMS probe data. These operating mode distributions were used to calculate 

emission rates for each segment using MOVES. To calibrate the model, we minimized the 

difference between the MOVES emissions rates based on the simulated activity versus the 

TOTEMS probe vehicle activity. To measure the difference, we used mean log relative 

error (MLRE), which is given by  

1

𝑛
∑ |𝑙𝑜𝑔10 (

𝑟𝑠𝑖𝑚,𝑖

𝑟𝑝𝑟𝑜𝑏𝑒,𝑖
)|𝑎𝑙𝑙 𝑖  [iv] 

where n is the number of model test route segments, i indexes the segments, rsim,i is 

the emission rate calculated from the simulation data, and rprobe,i is the emission rate 

calculated using the TOTEMS activity data.  

We evaluate model calibration using CO and PM2.5.  For each pollutant, the 

emissions rates are calculated in MOVES for the 1:00 pm hour in July 2011, for a one-

year-old passenger car. For CO, the estimates include running emissions only. For PM2.5, 

the estimates include running emissions, tire wear, and brake wear emissions.  

A total of three parameters were tested. The parameter Aa was the single parameter 

tested from the car-following model. The other two parameters were Ta and g from the 

free-flow model. Each of these parameters was tested over a range of values across multiple 

simulations.   

3.6 Calibration Results 

The car-following model 

The parameter Aα is a scaling multiplier for the car-following acceleration model. 

Increasing the value of this parameter (making it more positive) will increase the magnitude 

of acceleration. The default value for this parameter is 2.81. For calibration, the parameter 

value was allowed to vary between 0.703 and 11.2. The simulation was run 100 times. 

Simulation results were binned into 5 groups according to the parameter value used in each 
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simulation. The second group with values between 2.07 and 4.3 included the default value 

of 2.81. Each group included 20 simulations on average. The other groups covered 

parameter value ranges higher and lower than the default value. These other groups were 

used to test changes to the parameter value from the default value.   

The emissions results show little sensitivity to A. For both CO and PM2.5, the worst 

MLRE is only seven percent greater than the best MLRE (Figure 3-2). Because the errors 

are not sensitive to A, it was set at its default value of 2.81. The car-following model has 

3 other parameters that were not tested because it is unlikely that the errors will be sensitive 

to these parameters if the errors are not sensitive to the multiplier (Aa) (see Equation ii).  

 

 
Figure 3-2. Relative error for each segment by pollutant and range of values for Aa. Errors 

change little across the different levels of Aa. 

 

Free-flow model 

Acceleration look-up table calibration 

To calibrate the free-flow model, we begin with Ta, which is a look-up table and bi-linear 

interpolation function. This parameter is the core of the free-flow model, and so it is a good 

place to start.  

The lookup table (Table 3-1) consists of different acceleration rates by vehicle 

weight-to-power ratio (rows) and speed (columns). In the simulation, the acceleration of 

each vehicle is calculated by interpolating between the acceleration values in this table 

based on the vehicle’s weight-to-power ratio and current speed. The values in the look-up 

table are critical in determining the simulated acceleration behavior.  
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To calibrate the parameter Ta the values in the look-up table were varied from the 

default values, and the changed values were tested using a series of simulations, guided by 

a number of considerations, as follows: 

First, the weight-to-power ratio of the probe vehicle was 27 lbs per hp, which falls 

between the first and second rows of Table . This meant that only the first and second rows 

would have an effect on the simulated probe vehicles. Therefore, only the first and second 

rows were varied, and the other rows were not changed.  

Second, because the probe vehicle’s weight-to-power ratio fell between rows, the 

simulation would calculate the acceleration by interpolating between rows.  To negate the 

effect of interpolation and more directly control the calculated acceleration values, the first 

and second rows were always set to be the same as each other.  

Third, each row in the look-up table has six values. It would have been difficult to 

calibrate all six of these values. For example, if we had wanted to test each value at four 

different levels, there would have been 46 = 4096 combinations to test with several 

simulations each. Given the relative expense of running simulations, testing this number of 

combinations would have been unwieldy. To simplify the calibration process we sought to 

re-parameterize the model with fewer parameters, and yet still maintain a model form that 

could reasonably predict real-world behavior. The model was re-parameterized using the 

linearly-decreasing acceleration model because it has only two parameters  

The linearly-decreasing acceleration model is given by  

�̇� = 𝑚𝑎𝑥 (𝜃1 −
𝜃1

𝜃2
𝑠 , 0.1)  [v] 

where �̇� is the acceleration in fpsps, s is the current speed (in miles per hour); θ1 is a 

parameter with units of fpsps, and θ2 is a parameter with units of mph. The parameter θ1 

represents the acceleration when a vehicle is just starting from a stop, and is the maximum 

acceleration achieved. The parameter θ2 represents the target speed, or the speed at which 

acceleration becomes zero. Using these two parameters, the model predicts that 

acceleration starts out at θ1 as the vehicle starts from a stop, and then decreases linearly 

with speed until the acceleration reached zero when the target speed θ2 is achieved.  

 To calibrate the model, we tested θ1 and θ2 simultaneously over ranges of values. 

For each unique combination of values for θ1 and θ2 we calculated the six acceleration 

values for the first and second rows of the look-up table Ta. This calculation was performed 

by entering the speeds associated with each of the six columns of the lookup table into 

Equation v. The six calculated acceleration values were then entered into the look-up table 

before running the simulation.  

For the calibration process we allowed θ1 to vary between 3.1 and 12.0; and θ2 to 

vary between 25 and 128. Each parameter was varied independently. We ran the simulation 

300 times and the results were divided into 16 groups based on the values of θ1 and θ2 

values that were used in the simulation.  

The MLRE results show significantly more sensitivity to these free-flow model 

parameters than to the car-following parameters. For both pollutants, the best MLRE 

occurs when θ1 (starting acceleration) is between 8.6 and 12.0 fpsps, and θ2 (target speed) 

is between 25 and 41 mph (Figure 3-3).  

It is not possible to compare these results directly to results for the default look-up 

table values, because the default values don’t fall on a straight line and so can’t be produced 
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by any combination of values for θ1 and θ2. However, we did estimate lines that 

approximate the default values using least-squares fitting. The least-squares fit to the 

default values in each of the first two rows yields parameter values of about 9.5 fpsps and 

120 mph for the first row; and 8.2 fpsps and 110 mph for the second row. The calibrated 

range for θ1 (8.6-12.0) is near the approximated default values for θ1 (9.5 and 8.2), but the 

calibrated range for θ2 (25-41 mph) is much less than the default approximated values (120 

and 110 mph).  

This difference reflects a major change to the acceleration model resulting from the 

calibration process. Under the default parameters, acceleration decreases gradually from 

the starting acceleration until the vehicle is very near the target speed. Then the sub-model 

forces the acceleration to drop quickly to zero. Under the calibrated parameters, the 

acceleration decreases more quickly from the starting acceleration, and approaches zero 

smoothly. When the sub-model takes over, the acceleration is already near zero so the drop 

is not severe more accurately reflecting the driving behavior of the probe vehicle.  

 Before continuing with the calibration we set the θ1 and θ2 parameters to the 

approximate midpoints of their calibrated ranges, 10 fpsps and 33 mph. With these 

parameters the values in the first two rows of the lookup table are 10.0, 7.0, 3.9, 0.9, 0.1, 

and 0.1.  

Calibration of the Effect of Grade 

Because the errors showed significant sensitivity to the free-flow lookup table, the free-

flow parameter g, was examined.  

The default value for g is 30.5 fpsps. It is allowed to vary between 0 and 32.15. We 

ran 100 simulations and allowed the parameter to vary between 0 and 32.15. The simulation 

results were divided into 5 groups for an average of 20 simulations per group. 

For CO, the smallest errors occurred when g was between 15 and 21.98. For PM2.5, 

the smallest errors occurred when g was between 26.89 and 32.05. We compromise 

between the best calibration for CO and the best for PM2.5 by choosing the range (21.98, 

26.89), which gives the second-best results for PM2.5, and near second-best results for CO. 

Within that range we set g to be 24 fpsps (approximate midpoint). 
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Range for θ1 Range for θ2 

MLRE 

CO PM2.5 

(3.1, 5.1) (25, 41) 0.459 0.268 

(3.1, 5.1) (41, 51) 0.448 0.250 

(3.1, 5.1) (51, 70) 0.403 0.205 

(3.1, 5.1) (70, 128) 0.453 0.198 

(5.1, 6.7) (25, 41) 0.312 0.176 

(5.1, 6.7) (41, 51) 0.339 0.141 

(5.1, 6.7) (51, 70) 0.395 0.114 

(5.1, 6.7) (70, 128) 0.410 0.132 

(6.7, 8.6) (25, 41) 0.288 0.111 

(6.7, 8.6) (41, 51) 0.309 0.075 

(6.7, 8.6) (51, 70) 0.342 0.111 

(6.7, 8.6) (70, 128) 0.488 0.143 

(8.6, 12.0) (25, 41) 0.196 0.071 (approx. linearly-decreasing model) 

(8.6, 12.0) (41, 51) 0.455 0.113 

(8.6, 12.0) (51, 70) 0.575 0.140 

(8.6, 12.0) (70, 128) 0.599 0.133 (approx. near-constant model) 
 

 
Figure 3-3. MLRE by Pollutant and Ranges of Value of θ1 and θ2  

3.7 Model Validation 
Using the calibrated parameters to calibrate the microsimulation model, we ran the 

simulation 30 times. The emissions rates were then calculated from the simulation data for 
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the seven validation segments. Then the MLRE was calculated for each segment. For 

comparison, we also ran the model 30 times with the default parameters, and calculated the 

MLRE. For all seven validation segments and both pollutants the calibrated model 

performed better than the default model (Figure 3-4).  
 

 

Segment 

Log Relative Error 

CO PM2.5 

Default Calibrated Default Calibrated 

3 0.902 0.286 0.067 -0.037 

4 0.963 0.282 0.051 -0.050 

6 1.252 0.579 0.283 0.108 

8 0.377 -0.079 0.076 0.001 

10 0.564 0.067 0.161 0.055 

14 0.289 -0.183 0.142 -0.039 

15 0.405 -0.014 0.156 0.033 

 
Figure 3-4. Log Relative Error for Each Segment by Pollutant for the Default (squared) and 

Calibrated (circles) Parameters 

3.8 Comparison of the Default and Calibrated Models 
We compare the default and calibrated models three ways:  

(1) Vehicle trajectories for vehicles starting from a stop 

The most important calibration adjustment to the model was adjusting the free-flow 

acceleration lookup table Ta. To understand the effect of this adjustment, we constructed a 
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simulation model with a single one-way roadway with a stop sign near it’s midpoint. 

Vehicles entered the network from one end of the roadway, stopped at the stop sign, then 

continued on to exit the network. We ran the simulation once with the default parameters, 

and once with the calibrated parameters. We then isolated the part of each vehicle trajectory 

associated with accelerating from a stop to target speed. The speed/acceleration traces are 

plotted in Figure 3-5. The calibrated trajectories decrease in acceleration with respect to 

velocity more quickly than do the default trajectories. This has the effect that the calibrated 

vehicles achieve their target speed more gradually, and that accelerations are less and less 

extreme as speed increases compared to the default.  

 

(2) VSP distribution 

To compare the VSP distributions of the default and calibrated parameters, we ran the 

simulation 30 times using the default parameters, and 30 times using the calibrated 

parameters. We then calculated the VSP distribution across all 30 simulations and 15 

segments for each of the 2 parameter sets. The distributions are compared in Figure 3-6.  

In the positive VSP range, calibrated parameters produced less extreme VSP values than 

did the default parameters. The calibrated VSP range was similar to the TOTEMS real-

world values. 

 

(3) Operating mode distribution 

We compared the operating mode distributions of the default and calibrated parameters 

using the same sets of 30 simulations. The operating modes were ‘weighted’ by multiplying 

each distribution proportion by the associated MOVES emissions rate. This has the effect 

of giving more importance to those operating modes that have higher emissions rates and 

thus have more effect on the total emissions estimate.  

The weighted operating mode distributions are presented in Figure 3-7. For both 

CO and PM2.5, the largest differences are for operating mode 30, where the default 

parameters lead to over-production of project-level emissions. Operating mode 30 is the 

highest VSP bin available for speeds between 25 and 50 miles per hour. For both CO and 

PM2.5, operating mode 30 has the highest emission rate of any operating mode, which 

means that even small errors in distribution for this operating mode can produce large 

errors in link emissions estimates. This fact is illustrated by the large difference between 

the default and calibrated weighted operating mode distributions (Figure 3-7). The default 

parameters over-estimate the distribution for this bin because they predict relatively 

extreme accelerations for speeds between 25 and 50 mph. The calibrated parameters 

generate more moderate accelerations.  
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Figure 3-3. Vehicle speed-acceleration traces from a contrived simulation for the default 

parameters (top) and calibrated parameters (bottom). Acceleration decreases more 

rapidly for the calibrated model than for the default model as speed approaches the 

target speed. 

 

 
Figure 3-4. VSP distribution for all 15 segments for the calibrated parameters (black line) 

and the default parameters (gray fill). The calibrated distribution has less extreme values 

in the positive range.  
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Figure 3-5. Product of operating mode distribution and emissions rate for each operating 

mode, for the calibrated parameters (circles) and the default parameters (squares). 

Operating mode 30 contributed the most to overall emissions estimate errors. 

 

3.9 Discussion and Conclusion 
This research demonstrates that traffic microsimulation models can be calibrated to more 

closely track the operating mode distributions of real world traffic. This is a critical finding 

if microsimulation models are to be used for estimating mobile emissions, particularly for 

project-level air quality analysis.  

 The key finding from this research is that default model parameters within the 

microsimulation model software (TransModeler) tested in this research are typically not 

well calibrated for the needs of an emissions analysis. This finding reinforces similar 

findings from previous research.  Notably, while the default parameters within the car-

following model showed virtually no impact on the resulting emissions, the default 

parameters within the free-flow model were critical in affecting emissions results. 

Specifically, the rate of acceleration as the target operating speed is being approach is a 

key parameter that must be adjusted by the model user to more accurately replicate real 

world motorist behavior.  The techniques employed here suggest that vehicle trajectory 

plots of a simple stop-and-go simulation for the vehicle types (power-to-weight, 

acceleration limits) of interest in a microsimulation/emissions study can be used to identify 

appropriate free-flow model parameters.    

 The research utilized one of the commercial software microsimulation packages, 

TransModeler. Future research should investigate other microsimulation tools to identify 

comparable parameters in the free-flow model that can be adjusted to better replicate real 

world driver behavior. 

 This research suggests that the default free-flow model parameters will result in 

over-estimating acceleration intensity and, hence, resulting project-level emissions. 
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Reducing the intensity of acceleration as the target operating speed is approached provides 

a much more accurate estimate of driver behavior and of the resulting emissions. 
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